منابع مشابه
Graph theory for fused cubic clusters of water dodecamer.
The stable structures of the fused cubic water cluster (H2O)12 are examined using graph theoretical techniques and ab initio calculations. The calculations are obtained by scanning the symmetry of digraph structures of hydrogen-bond network spanning 12 oxygen atom vertexes. Using the Pólya theorem the cycle index expressions for 12 vertexes and 20 edges of a cuboid in point-group symmetry D(4h)...
متن کاملFinite groups admitting a connected cubic integral bi-Cayley graph
A graph is called integral if all eigenvalues of its adjacency matrix are integers. Given a subset $S$ of a finite group $G$, the bi-Cayley graph $BCay(G,S)$ is a graph with vertex set $Gtimes{1,2}$ and edge set ${{(x,1),(sx,2)}mid sin S, xin G}$. In this paper, we classify all finite groups admitting a connected cubic integral bi-Cayley graph.
متن کاملCubic Free Field Theory
We point out the existence of a class of non-Gaussian yet free “quantum field theories” in 0+0 dimensions, based on a cubic action classified by simple Lie groups. A “three-pronged” version of the Wick theorem applies. (LPTHE-P03-01, hep-th/0302043) With the exception of a few integrable models in low dimension, much of what we know of quantum field theory relies on perturbation around a free t...
متن کاملRecognizing Dualizing Complexes
Let A be a noetherian local commutative ring and let M be a suitable complex of A-modules. This paper proves that M is a dualizing complex for A if and only if the trivial extension A ⋉M is a Gorenstein Differential Graded Algebra. As a corollary follows that A has a dualizing complex if and only if it is a quotient of a Gorenstein local Differential Graded Algebra. Let A be a noetherian local ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fundamenta Mathematicae
سال: 1988
ISSN: 0016-2736,1730-6329
DOI: 10.4064/fm-130-1-67-72